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Background: Preliminary evidence has shown inequities in
coronavirus disease 2019 (COVID-19)–related cases and deaths
in the United States.

Objective: To explore the emergence of spatial inequities
in COVID-19 testing, positivity, confirmed cases, and mortal-
ity in New York, Philadelphia, and Chicago during the first 6
months of the pandemic.

Design: Ecological, observational study at the ZIP code tab-
ulation area (ZCTA) level from March to September 2020.

Setting: Chicago, New York, and Philadelphia.

Participants: All populated ZCTAs in the 3 cities.

Measures: Outcomes were ZCTA-level COVID-19 testing,
positivity, confirmed cases, and mortality cumulatively through
the end of September 2020. Predictors were the Centers for
Disease Control and Prevention Social Vulnerability Index and
its 4 domains, obtained from the 2014–2018 American
Community Survey. The spatial autocorrelation of COVID-19
outcomes was examined by using global and local Moran I

statistics, and estimated associations were examined by using
spatial conditional autoregressive negative binomial models.

Results: Spatial clusters of high and low positivity, confirmed
cases, and mortality were found, co-located with clusters of
low and high social vulnerability in the 3 cities. Evidence was
also found for spatial inequities in testing, positivity, con-
firmed cases, and mortality. Specifically, neighborhoods with
higher social vulnerability had lower testing rates and higher
positivity ratios, confirmed case rates, and mortality rates.

Limitations: The ZCTAs are imperfect and heterogeneous
geographic units of analysis. Surveillance data were used,
which may be incomplete.

Conclusion: Spatial inequities exist in COVID-19 testing, pos-
itivity, confirmed cases, and mortality in 3 large U.S. cities.
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As of the end of 2020, the coronavirus disease 2019
(COVID-19) pandemic had taken the lives of more

than 1.5 million people worldwide and more than
350000 in the United States (1). Cities worldwide have
emerged as especially vulnerable to COVID-19. Cities
are characterized by diverse populations and are home
to pronounced differences in health by race and socioe-
conomic position; these differences are often called
“health inequities” because they are avoidable and
unjust (2). The presence of large racial and ethnic differ-
ences in COVID-19 within U.S. cities has been docu-
mented. For example, in New York, both Black persons
and Hispanic persons have double the age-adjusted
mortality rate of non-Hispanic White persons (3); in
Chicago, 50% of deaths have occurred in Black persons,
who make up only 30% of the population (4); and in
Philadelphia, age-specific incidence, hospitalization, and
mortality rates are 2 to 3 times higher for Black persons
and Hispanic persons than for non-Hispanic White per-
sons (5). These stark differences by race are consistent
with racial health inequities in many health outcomes
and probably reflect multiple interrelated processes
linked to structural inequity, historical racist policies, and
residential segregation (6–8).

Cities in the United States are characterized by
strong residential segregation by both race/ethnicity and
income, one of the most visible manifestations of struc-
tural racism (9). Residential segregation results in stark
differences across neighborhoods in multiple factors
that could be related to both the incidence and severity

of COVID-19, including factors related to transmission
(such as overcrowding and jobs that do not allow social
distancing) and to severity of disease (such as a higher
prevalence of chronic health conditions related to neigh-
borhood environments, greater air pollution exposure,
and limited access to quality health care) (6–8, 10, 11).
Few studies have systematically characterized spatial
inequities in COVID-19–related outcomes in cities over
the course of the pandemic.

Characterizing social and spatial inequities in cities is
critical to developing appropriate interventions and poli-
cies to prevent COVID-19 deaths in the future and miti-
gate economic and racial inequities. We used data from
3 large U.S. cities—Chicago, New York, and Philadelphia—
to characterize spatial and social inequities in testing,
positivity, confirmed cases, and mortality.

METHODS

Setting
We used data on the total numbers of tests, con-

firmed cases, and deaths by ZIP code tabulation area
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(ZCTA) of residence from Chicago, New York, and
Philadelphia. For Chicago, we downloaded data (includ-
ing cumulative data) from the Chicago Department of
Public Health (12) through 3October 2020. For New York,
we downloaded cumulative data made available by New
York Department of Health and Mental Hygiene in their
GitHub repository (13) through 1 October 2020. For
Philadelphia, we downloaded data (including cumulative
data) from the Philadelphia Department of Public Health
made available in OpenDataPhilly (5) through 1 October
2020.

Outcomes
Study outcomes were 4 COVID-19 indicators: testing

rates (total tests per 10000 persons), positivity ratio (14)
(positive tests per total tests), confirmed case rates (con-
firmed cases per 1000 persons), and mortality rates
(deaths per 1000 persons). For all indicators, we com-
puted rates cumulatively through the end of the study
period.

Predictors
To obtain a summary of social conditions in each

area of residence, we used the Centers for Disease
Control and Prevention's Social Vulnerability Index (SVI)
(15). Recent research has found the SVI is predictive of
COVID-19 incidence and mortality at the county level
(16). The SVI reflects a community's ability to prevent
human suffering and financial loss in the event of disaster,
including disease outbreaks (15). It includes 4 domains—
socioeconomic status, household composition and disabil-
ity, minority status and language, and housing type and
transportation—along with a summary score including all 4
domains. The 4 domains and summary score were calcu-
lated by the Centers for Disease Control and Prevention at
the census tract level by using data from 15 variables from
the 2014–2018 American Community Survey. Census
tracts were ranked according to the values of each of the
15 variables, and percentile ranks were computed for
each census tract within each state (in this case, Illinois,
New York, and Pennsylvania). The Supplement (available
at Annals.org) provides more details.

To aggregate the SVI to the ZCTA level, we used the
Census Bureau's ZCTA to Census Tract Relationship File
and computed a weighted mean of the SVI by ZCTA,
using the population of the census tract in the ZCTA as
the weight. A higher value of the SVI or of its component
scores signifies higher vulnerability, either overall or in its
4 domains. For example, higher vulnerability in the soci-
oeconomic status domain reflects a higher proportion of
people living in poverty, unemployed, with lower income,
or without a high school diploma. Higher vulnerability in
the housing type and transportation domain reflects a
higher number of people living in multiunit structures or
mobile homes, in crowded situations, without a vehicle, or
in group quarters.

Because the SVI represents the rank of each census
tract or ZCTA within each state, we transformed the SVI
to make coefficients comparable across cities. We first
excluded all ZCTAs that were not part of each city and
then standardized SVI and its domain scores by

subtracting the mean and dividing by the SD for each
city separately.

Statistical Analysis
We conducted our analysis in 3 steps. First, we

explored the spatial distribution of each of the 5 predic-
tors (the 4 SVI domains and summary score) and the 4
COVID-19 outcomes (testing, positivity, confirmed cases,
and mortality) cumulatively through the end of September
by using choropleth maps. To explore whether there was
spatial autocorrelation, we computed the global Moran I
statistic (17, 18). To show the location of spatial clusters, we
computed the local indicator of spatial association or local
Moran I statistic (17, 18) and displayed clusters with a P
value less than 0.05.

The global Moran I statistic estimates the overall
degree of spatial correlation— that is, the degree to
which the ZTCA rates of interest, such as testing, tend to
be geographically located close together, far apart, or
distributed randomly across the larger area (in this case,
each city). The Moran I statistic ranges from –1 to 1; posi-
tive values suggest positive spatial autocorrelation (that
is, similar rates located next to each other), negative val-
ues suggest negative spatial autocorrelation or disper-
sion (that is, similar rates located far from each other),
and values close to 0 indicate a random distribution.
Significant P values indicate evidence of departures from
complete randomness.

The local Moran I statistic for each individual ZTCA
reflects the similarity of rates with those of nearby areas
and can help identify outliers. These local indices are rel-
ative measures with dimensions interpretable only by Z
scores and their associated P values. Hot spots are con-
tiguous areas with consistently high testing rates; outliers
would, for example, be areas with high testing rates sur-
rounded primarily by areas with lower testing rates.
Likewise, cold spots are contiguous areas with consis-
tently low testing rates; in this instance, outliers would be
areas with low testing rates surrounded primarily by
areas with higher testing rates.

Second, we examined the relationship between SVI
and each of the outcomes through the end of the study
period by using scatter plots and smoothed loess lines.
Third, to estimate the strength of the association between
each predictor and outcome, we considered using a
Poisson model. However, after exploring the distribution
of the outcomes, and after using the approach of Gelman
and Hill (19) to check for overdispersion in Poisson mod-
els, we opted for a negative binomial model. Negative bi-
nomial models relax the assumption of equality between
the mean and variance, allowing for overdispersion. We
fitted a separate model for each city and included the 5
predictors in separate models. To account for the role of
age in determining testing practices and influencing the
probability of transmission and its causal role in mortality,
we adjusted all models by the percentage of people aged
65 years or older in the ZCTA.

To account for spatial autocorrelation of the outcomes,
we fitted a Besag–York–Molli!e conditional autoregressive
model (20), including a structured and unstructured ZCTA
random effect, both following an intrinsic Gaussian Markov
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random field (20). The structured spatial random effect
takes into consideration that ZCTAs are more similar to
other neighboring ZCTAs than to those further away. We
defined neighboring ZCTAs on the basis of regions with
contiguous boundaries, defined as sharing 1 or more
boundary point. We fitted this model by using integrated
nested Laplace approximations, a method approximating
Bayesian inference (20, 21). Although this approach is an
approximation-based method, it has previously shown ac-
curacy and minimizes computational time (20–22). Details
on model specification are provided in the Supplement.
Results are shown as rate ratios associated with a 1-SD
higher value of the SVI or its domains, separately for each
city.

All analyses were conducted by using R, version
4.0.2 (23). Spatial analyses were conducted by using the
R package spdep (24) and R-INLA (25). More details on
data management, the SVI, and the models are available
in the Supplement. The code for replication is available
at https://github.com/usamabilal/COVID_Disparities.

Role of the Funding Source
This study was funded by the National Institutes of

Health and the Robert Wood Johnson Foundation. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

RESULTS

A total of 58, 177, and 46 ZIP codes in Chicago, New
York, and Philadelphia, respectively, were included in
the study. From the beginning of the outbreak up to the
latest available date (3 October 2020 in Chicago and 1
October 2020 in New York and Philadelphia), a total of
674929, 2383919, and 411559 COVID-19 tests had
been conducted in Chicago, New York, and Philadelphia,
respectively. There were 81657, 233397, and 37307 con-
firmed COVID-19 cases and 2974, 19149, and 1803
COVID-19 deaths, respectively.

We found that testing, positivity, confirmed cases,
and mortality were spatially autocorrelated in the 3 cities
(global Moran I ranging from 0.198 to 0.803; P < 0.001 in
all cases except confirmed cases in Philadelphia, with P =
0.011, for the null hypothesis of no spatial autocorrela-
tion), with the exception of mortality in Philadelphia, for
which we did not find evidence for significant spatial
autocorrelation (global Moran I = 0.062; P = 0.140).
These patterns held after the spatial distribution of the
SVI was taken into account (global Moran I ranging from
0.127 to 0.705; P < 0.05 in all cases), with the exception
of confirmed cases and mortality for Philadelphia, which
did not show significant spatial autocorrelation after the
SVI was controlled for (Moran I = !0.011 and !0.058; P =
0.440 and P = 0.630, respectively). The Supplement
shows the global Moran I statistics and associated Moran
scatter plots for the 3 cities and 4 outcomes.

Figures 1 to 3 show the spatial patterning of clusters
of COVID-19 testing, positivity, confirmed cases, mortal-
ity, and SVI in Chicago, New York, and Philadelphia. In
general, clusters of high positivity and confirmed cases

were spatially co-located with clusters of high social
vulnerability.

Areas of the West and South sides of Chicago have
clusters of high positivity, confirmed cases, and mortality
(Figure 1). For example, ZCTAs 60636 and 60644 in the
South Side and West Side, respectively, are significant
clusters of high positivity (local Moran I = 5.32 and 2.81;
P < 0.001 and P = 0.018), confirmed cases (local Moran
I = 5.55 and 3.65; P = 0.007 and 0.013), and mortality
(local Moran I = 4.61 and 3.26; P = 0.020 and 0.024).
Conversely, the Central and North sides of Chicago had
clusters of low positivity, confirmed cases, and mortality,
along with high testing (Figure 1). For example, ZCTA
60601 in Central Chicago is a cluster of high testing and
low positivity, confirmed cases, and mortality (local
Moran I = 5.50, 9.53, 5.88, and 6.78; P = 0.003, P =
0.004, P < 0.001, and P = 0.001), whereas ZCTA 60661 in
the North Side is a cluster of low positivity and mortality
(local Moran I = 4.09 and 6.22, P = 0.015 and P < 0.001).

In New York, there were clusters of high positivity,
confirmed cases, and mortality in the Bronx and Queens
(Figure 2). For example, ZCTAs 10467 and 11368 in the
Bronx and Queens are statistically significant clusters of
high positivity (local Moran I = 6.02 and 6.36; P = 0.019
and 0.010), confirmed cases (local Moran I = 14.2 and
11.46; P < 0.001 for both), and mortality (local Moran I =
6.17 and 13.54; P = 0.016 and P < 0.001). There were
also clusters of high testing and low positivity, confirmed
cases, and mortality in Manhattan and the adjacent areas
of Brooklyn (Figure 2). For example, ZCTA 10014 in
Manhattan is a cluster of high testing, low positivity, con-
firmed cases, and mortality (local Moran I = 7.08, 7.15,
8.71, and 4.10; P < 0.001, P < 0.001, P < 0.001, and P =
0.008), whereas ZCTA 11238 in Brooklyn is a cluster of
low positivity and confirmed cases (local Moran I = 6.97
and 5.17; P = 0.009 and P < 0.001).

In Philadelphia (Figure 3), we found clusters of high
testing and low positivity and confirmed cases in Center
City, including ZCTAs 19102 (local Moran I= 18.87, 3.90,
and 11.04; P < 0.001, P < 0.001, and P = 0.037) and 19103
(local Moran I= 5.44, 5.35, and 7.341; P = 0.002, P = 0.002,
and P < 0.001). Most of North and Northeast Philadelphia
was contained in a cluster of low testing and high positivity.
For example, ZCTAs 19124 and 19149 are significant clus-
ters of low testing (local Moran I = 8.02 and 4.43; P < 0.001
and P = 0.009) and high positivity (local Moran I = 5.51 and
7.70; P= 0.010 and P < 0.001).

Figure 4 shows the relationship between the SVI and
cumulative testing rates, positivity ratios, confirmed case
rates, and mortality rates in the 3 cities. Testing rates were
slightly lower in areas of higher vulnerability in Chicago,
New York, and Philadelphia. Positivity, confirmed cases,
and mortality all increased monotonically with increasing
social vulnerability in Chicago. A similar pattern was
observed in New York, but the increase was less marked
in ZCTAs above mean vulnerability. Similar patterns were
observed in Philadelphia for positivity and confirmed
cases, but the SVI was not consistently associated with
mortality.

The Table shows rate ratios for each outcome (cumu-
latively across the full study period) associated with a 1-

Spatial Inequities in COVID-19 Variables in 3 U.S. Cities ORIGINAL RESEARCH

Annals.org Annals of Internal Medicine 3

https://github.com/usamabilal/COVID_Disparities
http://www.annals.org
James Bloyd

James Bloyd



SD higher value of the SVI index and its 4 domains, after
adjustment for the percentage of the population aged
65 years or older. Higher social vulnerability was associ-
ated with 13% lower testing rates in Chicago, 3% lower
rates in New York, and 9% lower rates in Philadelphia,
although credible intervals crossed the null. Associations
of SVI with positivity, confirmed cases, and mortality
were similar in the 3 cities. A 1-SD higher SVI was associ-
ated with 40%, 37%, and 40% higher positivity in
Chicago, New York, and Philadelphia, respectively; 22%,
33%, and 27% higher confirmed cases; and 44%, 56%,
and 58% higher mortality. For the 3 cities, we found that
the 3 social vulnerability domains of socioeconomic sta-
tus, household composition and disability, and minority
status and language were associated with the study out-
comes similarly to the overall index. However, weaker or
even opposite associations were observed for the hous-
ing type and transportation domain.

DISCUSSION

We documented large spatial inequities in COVID-
19 through the end of September 2020 in 3 large U.S.
cities: Chicago, New York, and Philadelphia. More vul-
nerable neighborhoods in these cities had higher rates
of COVID-19 positivity, confirmed cases, and mortality

and lower testing rates. We also found clusters of high
and low positivity, confirmed cases, and mortality, co-
located with areas of high and low vulnerability, respec-
tively. Notably, we observed very strong inequities in
mortality, with mortality rates increasing by about 50%
for each 1-SD increase in the SVI.

Our findings are consistent with those of other stud-
ies that have examined inequities in COVID-19 incidence
by ZCTA in other cities. For example, Chen and Krieger
(10) reported a monotonic increase in confirmed cases
in ZCTAs of Illinois and New York with decreasing area-
level socioeconomic status. Analysis at the county level
by these investigators showed similar gradients (10),
consistent with other research (26, 27), including a study
using the SVI as a predictor at the county level (16). We
found that within these large cities, clusters of high and
low positivity and confirmed cases were mostly co-
located with clusters of high and low vulnerability,
respectively. These include areas of concentrated pov-
erty and with a history of extreme racial segregation (7),
including West and North Philadelphia, the West Side of
Chicago, and the Bronx in New York. Notably, Chicago,
Philadelphia, and New York are among the top 10 most
segregated cities in the United States (28).

As other researchers have noted (6–8), potential
explanations for neighborhood inequities in incidence

Figure 1. Spatial distribution and clusters of coronavirus disease 2019 testing, positivity, confirmed cases, andmortality and social vul-
nerability in ZIP code tabulation areas of Chicago.
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Clusters were calculated by using the local Moran I statistic; clusters have a P value< 0.05. “High–high” indicates hot spots and “low–low” indicates cold
spots. SVI= Social Vulnerability Index.
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may include differential exposure to COVID-19 and as
well as differential susceptibility to infection. Residents of
higher SVI neighborhoods likely have higher exposure
to COVID-19 because of the types of jobs they have

(such as essential workers in the health care, personal
care, production, or service industries [29] and personal
care or service occupations [30]), lack of telecommuting
options (31), dependence on mass transit (32), and

Figure 2. Spatial distribution and clusters of coronavirus disease 2019 testing, positivity, confirmed cases, and mortality and social
vulnerability in ZIP code tabulation areas of New York.
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Clusters were calculated by using the local Moran I statistic; clusters have a P value< 0.05. “High–high” indicates hot spots and “low–low” indicates cold
spots. SVI= Social Vulnerability Index.

Figure 3. Spatial distribution and clusters of coronavirus disease 2019 testing, positivity, confirmed cases, and mortality and social
vulnerability in ZIP code tabulation areas of Philadelphia.
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Figure 4. Scatter plots showing the relationship between the Social Vulnerability Index and coronavirus disease 2019 testing, positiv-
ity, confirmed cases, andmortality in ZIP code tabulation areas of Chicago, New York, and Philadelphia.
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Solid lines in graph are loess smoothers. The Social Vulnerability Index has been standardized for each city, so that its units are the SD of the Social
Vulnerability Index for each city separately.

Table. Rate Ratios for COVID-19–Related Variables in 3 U.S. Cities*

City and Variable Rate Ratio (95% CrI)

Testing Positivity Incidence Mortality

Chicago
Social Vulnerability Index 0.87 (0.74–1.01) 1.40 (1.25–1.58) 1.22 (1.04–1.42) 1.44 (1.15–1.80)
Socioeconomic status 0.87 (0.74–1.02) 1.46 (1.30–1.65) 1.27 (1.09–1.49) 1.52 (1.21–1.91)
Household composition and disability 0.86 (0.74–1.02) 1.34 (1.16–1.55) 1.17 (0.98–1.39) 1.46 (1.14–1.87)
Minority status and language 0.95 (0.82–1.09) 1.34 (1.20–1.49) 1.27 (1.11–1.45) 1.33 (1.08–1.64)
Housing type and transportation 0.95 (0.82–1.11) 0.95 (0.82–1.10) 0.89 (0.76–1.05) 0.91 (0.71–1.16)

New York
Social Vulnerability Index 0.97 (0.94–1.00) 1.37 (1.29–1.46) 1.33 (1.26–1.41) 1.56 (1.46–1.67)
Socioeconomic status 0.94 (0.91–0.97) 1.47 (1.39–1.56) 1.39 (1.32–1.46) 1.62 (1.51–1.73)
Household composition and disability 0.98 (0.96–1.01) 1.35 (1.27–1.42) 1.32 (1.26–1.38) 1.39 (1.30–1.48)
Minority status and language 0.94 (0.91–0.97) 1.36 (1.28–1.45) 1.28 (1.21–1.35) 1.51 (1.41–1.63)
Housing type and transportation 1.10 (1.07–1.12) 0.84 (0.78–0.90) 0.92 (0.86–0.98) 1.01 (0.93–1.10)

Philadelphia
Social Vulnerability Index 0.91 (0.82–1.02) 1.40 (1.25–1.55) 1.27 (1.15–1.42) 1.58 (1.24–2.00)
Socioeconomic status 0.90 (0.80–1.01) 1.41 (1.26–1.59) 1.27 (1.14–1.43) 1.49 (1.16–1.91)
Household composition and disability 0.90 (0.80–1.00) 1.37 (1.23–1.53) 1.23 (1.10–1.37) 1.31 (1.03–1.67)
Minority status and language 0.94 (0.85–1.05) 1.26 (1.13–1.42) 1.20 (1.08–1.33) 1.47 (1.13–1.91)
Housing type and transportation 1.03 (0.93–1.15) 1.01 (0.88–1.15) 1.03 (0.92–1.16) 1.28 (1.02–1.60)

COVID-19 = coronavirus disease 2019; CrI = credible interval.
* Values are rate ratios for a 1-SD higher value of the Social Vulnerability Index and its 4 domains. Models were adjusted for the percentage of the
population in the ZIP code tabulation area aged 65 years or older. Data are cumulative through 1 October 2020 for New York and Philadelphia and
3 October 2020 for Chicago.
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overcrowding within households (33). Whether there are
factors associated with differential susceptibility to infec-
tion is still unclear, but prior research on respiratory
viruses has documented that stress linked to disadvant-
age may increase the likelihood of developing disease
after exposure (34, 35).

We also found narrow inequities in testing, accompa-
nied by wider inequities in positivity. The inequities in
positivity suggest that despite apparently small inequi-
ties in testing, the rate of testing may actually be lower
than it needs to be in neighborhoods with high SVI and
possibly higher incidence. Barriers to testing can include
unequal location of testing sites (36), lack of vehicle own-
ership (37), lack of health insurance (38), lack of a usual
source of care for referrals (39), and potential mistrust of
the medical system (40). It is possible that the social pat-
terning of infection has been changing over time as the
pandemic progressed, beginning in wealthier areas
(possibly linked to business travel [41]) and subsequently
shifting to more deprived areas. As more longitudinal
data become available, understanding longitudinal pat-
terns may help in the preparedness for future outbreaks.
Our ability to adequately characterize inequities in inci-
dence necessarily requires equal access to testing.

A major finding was the substantially higher mortality
rate in neighborhoods with a higher SVI. Vulnerability to
severe disease and death from COVID-19 are related
to the presence of previous comorbidities, such as cardi-
ovascular disease, diabetes, and hypertension (42).
Because these comorbidities are more prevalent in peo-
ple of lower socioeconomic status and racial/ethnic
minorities (43, 44), it is expected that, at equal levels of
exposure, these groups will experience more severe
consequences from COVID-19. Other factors may also
affect the severity of disease and the case-fatality rates,
including access to and quality of health care, co-occur-
ring social factors (for example, stressors), and environ-
mental factors (for example, air pollution). A study with
17 million records in the United Kingdom showed that
even after adjustment for several comorbid conditions,
racial/ethnic minorities and people living in socioeco-
nomically deprived areas had a higher risk for death after
contracting COVID-19 (42). However, 2 recent studies
using data from Michigan and the Veteran Affairs health
system suggest that inequities in mortality are driven by
differences in infection rates rather than differential vul-
nerability (45, 46). We found that the relative risks for
mortality associated with higher SVI ZCTAs were slightly
higher than those observed for confirmed cases, but
underestimation of the underlying incidence in higher
SVI neighborhoods (because of lower testing) could
partly explain this difference.

We found that the housing type and transportation
domain of the SVI showed different associations com-
pared with the other domains or the overall summary
SVI. The housing type and transportation domain
includes variables detailing the proportion of the popula-
tion living in multiunit structures, mobile homes, group
quarters, or crowded situations or without a vehicle. It is
possible that these variables do not relate to differences
in COVID-19 outcomes within cities because either they

are not heterogeneous enough or they simply do not
capture true underlying determinants.

An important limitation of our study is the likely
underestimation of inequities in confirmed case rates
owing to the lack of systematic widespread testing. We
also lack individual-level data and rely on aggregated
surveillance data. In addition, ZCTAs are very imperfect
proxies for neighborhoods (47). Heterogeneity in the
sociodemographic composition within ZCTAs may have
led to underestimation of inequities (48). However, ZIP
codes represent easy-to-collect data sources during a
public health emergency, when more detailed geocod-
ing is less available.

In conclusion, we found large spatial inequities in
COVID-19 testing, positivity, confirmed cases, and mor-
tality in 3 large U.S. cities and strong associations of
COVID-19 positivity, confirmed cases, and mortality with
higher neighborhood social vulnerability. These within-
city neighborhood differences in COVID-19 outcomes
emerge from differences across neighborhoods gener-
ated and reinforced by residential segregation linked to
income inequality and structural racism (49–51), coupled
with decades of systematic disinvestment in segregated
neighborhoods (7–10, 50, 52). Addressing these struc-
tural factors linked to income inequality, racism, and seg-
regation will be fundamental to minimizing the toll of the
pandemic and to promoting population health and
health equity across many other health conditions.
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